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THE STABILITY OF MULTIDIMENSIONAL HAMILTONIAN SYSTEMS™

V.N. TKHAI

The Lyapunov stability of the zero solution of autonomous periodic
Hamiltonian systems is investigated. It is assumed that the linearized
system is stable, its matrix can be reduced to diagonal form, and all
characteristic indices (or roots of characteristic equations) are purely
imaginary. The problem is completely solved for periocdic systems with
one degree of freedom, and for autonomous systems with two degrees of
freedom /1-7/. The conditions of stability for systems with an arbitrary
number of degrees of freedom are obtained below, The results are used to
solve the problem of the Lyapunov stability of triangular libration points
of the restricted three-body problem (plane elliptic and three-dimensional
circular).

1. Statement of the problem, Consider the problem of the Layapunov stability of
the zeroth solution of the canonical system with an analytic Hamiltonian function H(p, q, 1),
2n  periodic in time t (or not explicitly dependent on time)

dp—— il ﬂ——a—}?— ' )fEG 1.1
D M He0Y (1.1)
p=(P;,‘~-sPn)sQ=(st~-~s?n)

We will assume that the linearized system is stable, all its characteristic indices (or
roots of the characteristic equation) are purely imaginary and different, and that the system
has no third~ and fourth-order resonances., We shall investigage the autonomous problem, when
the Hamiltonian ¥ is not a function of fixed sign (when it is, the stability problem is solved
by the Lagrange-Dirichlet theorem).

With these assumptions the Hamiltonian of the system reduces to the form /8,9/

H= E}we"a“r 2 C;‘;"i?'j"‘Hm(qu’z) (1.2)
i =1

f i, 3=

(2r; = p& + 9% i €4y = const; = 0)

where the function H! (p,q,t) contains terms p.q of order not lower than the fifth, The
coefficients ¢;; in (1.2) in terms of coefficients of second- and fourth-order forms in the
expansion of the initial Hamiltonian in series in p,q were calculated in /9/.

As in /1-4/, problem (1.1), (1.2) has, for n =1, & pericdic system, and for pn= 2 in
the autonomous case, has a positive solution in the sense of stability, if ¢, % 0 and ¢k —
2eiahyhy + Cgohy” 5= 0;  respectively. The problem of Lyapunov stability for n > 2 in the periodic
case and for n > 3 in the autonomous case has so far not been solved.

2. Instability. ©Hamiltonian systems are special cases of systems with invariant
measure. A simple statement can be showr to hold for these systems, which in spite of its
simplicity, sheds light on Lyapunov instability in the neighbourhood cf the singular point.
Since we are seeking in the first instance a solution of problem (1.1), {l1.2), we shall
limit the analysis to a 2n periedic or autonomous system specified by the differential
equations

dx/dt =X (x. 1), X(@0.t)=0, divX=0 (2.1)
x={n...,2z1}, X = (X,,... X

It is assumed that the right sides of (2.1} ensure the existence, unigueness, and
continuous dependence of solutions on the initial conditions in some neighbourhood of zero.

We shall say that the property § is satisfied by system (2.1), if &> 0 can be found
that, no matter how small 6> 0, a point will be found in the §&neighbourhood such that a
trajectory beginning at that point leaves the neighbourhood of e in a finite time for
increasing as well as decreasing time t.
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Lemma., The property of Lyapunov instability of the zero solution of system (2.1) for
0 1< +o0 or —oo < 1< 0 is equivalent to the property S.

Proof, Suppose that the zero solution of the periodic system (2.1) is Lyapunov unstable
when 0<t< 4. Then, in an arbitrary small S-neighbourhood of zero there is at least
one point which, moving according to (2.1), leaves that e-neighbourhood in finite time.

By virtue of the continuous dependence on the initial condition a certain set G of points
of non-zero measure belonging to the §-neighbourhood will alsec leave the e-neighbourhood
after a finite time.

As we are now interested in the previous history of the set G we shall consider Eq. (2.1)
when the time t is reduced.

When t is changed by 221, (2.1) defines a one-to-one continuous mapping T of the
"phase" space (X) into itself. That mapping maintains the phase volume. Let TG (k= 0, 41, +
2, ...) be the image of the set G after n-tuple mapping T. By virtue of the instability the
set 7% for some &, lies outside the e—neighbourhood. 1If when t is reduced all trajectories
beginning in G, belong to the e-~neighbourhood, then Trks** ¢ (k = —k,, —2k,, —3k,. ...) alsc
belongs to that neighbourhood. But this is impossible by virtue of the Poincar€ theorem on
return /10/, since the measure of C is non-zero, while the measure of the e-neighbourhood
is finite. Moreover, almost all points of G, in the meaning of measure, must leave the e-
neighbourhood.

Thus the set G contains at least one point such that the trajectory beginning at that
pocint will leave the é-neighbourhood in a finite time for increasing as well as decreasing
t. Obviously, such a peint also exists for an instability in —ow <1< 0, and also for an
unstable autonomous system.

3. Basic idea of the proof of the theorem on the stability of system
(1.1), (1.2). Tc use indirect proof we introduce an integral relation which will be
fundamental in obtaining the respective contradiction. In the case of a periodic system a
contradiction is obtained, when the guadratic form

n
Hy= 2 T,

1. 5=1

w
I

is ¢f fixed sign in the positive cone r, 0 (i=1... .. n).

Let us consider an unstable periodic system with the Hamiltonian function H, of fixed
sigr.. We define the v-neighbourhood of zero, by the ineguality | H, | <y

Due to the equa+tion of motion (1.1), (1.2) the derivative H, of the function H; divides
the phase space (p.q) for every t into three regions: H, <0, H, =0, H, />0 By virtue
of maintaining the phase vclume, and the assumption on instability, each of these regicns is

neon-empty. For all pcints of the surface |Hy;|=14* cf region HH; << 0, the integral
curves enter the inside of that surface as t increases.

We denote by §;(y) the curve defined on the surface |H, |= y* as follows. The ineguality
HHS <0 holds on S, (), and HS =0 is only at one of the ends of the curve §,(y) at the
peint (€ (y). All integral curves that pass through §, (y)! * (*Except the curve passing
threcugh ¢ y)) and enter the region |H,|<<y', leave it after a finite time. The integral
curve S (y) passes through the other end of curve 8§, (%), the point A ).

The integral curve § (y) intersects the surface |H,|{=y* at the points A (y) and

B (y), and the condition 1, > 12 is satisfied on it. Here T is the time of motion from
point A {y) to point B(y) ané S(y) , and 1, is the time of motion in the region |{H, | <
E

The curve S (y) always exists for any (0<y<e) . Indeed, the assumption of instablity
implies that property S is satisfied. Hence the integral curve which enters region VH < ¥4,
passes through the &-neighbourhood of zero, and leaves the region | H; <Cy' after a finite
time, does necessarily exist. The number & may be arbitrarily small, and besides, the
derivative of the function r=r, — ...+ r, by virtue of (1.1), (1.2) is of oxder r*'+ ., Hence
the smaller & the larger T, will be for a given 7.

The curve §,(y) may also be constructed for some y (0 <<y < &) in accordance with the

property S.

Let us denote by ( (e} the connected set of points on the surface |H,|=e* on which,
when t=0, the trajectories, which enter and leave the region |H,|< e after a finite
time, begin. Now suppose that it proved impossible to construct S§,(y) when y=g, Then
each set Qg8 containing points A4f(e) has no boundary points where H/ =0 Let us
consider G, (6}, the arbitrary closed connected set of point belonging to Q (&), The
trajectories beginning on ¢, (e) provide for some ¥ on the surface |H;|=* a connected
closed set (@, (v} that contains the points HS =0 The construction of the curve §,(nC
Q,(v) will thus be completed, if ¢ (e) is selected sc that ©¢;(}) contains the point 4 (.

This is always possible by virtue of property S. .
The trajectories that pass through 8, (y). with subseguent intersection of the surface
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|Hy |=4*, yield the curve S§,(y) whose ends are at the points B (y) and C (y). Curves

S (¥), 8y (y) and 8:(y) belong to a two-dimensional surface in extended phase space, and that
surface isproduced by the integral lines of the l-form pdq — Hdt. Hence with the appropriate
choice of integration direction from the point A4 (y) to the point B (y) , we have

S pdq—Hdt = S pdq—Hadt (3.2)
8(v) SiV)+5(v)

Changing the scale by replacing the variables p,q for Py, 9y » we shall subsequently
consider the Hamiltonian, which depends on the small parameter ¥

n
H= 3 hr+ vH- PHY (b g9 t) (3.3)

For a system with the Hamiltonaian (3.3) curves S8 (y), §,(y) and §,(y) are defined on the
surface |H; |= 1. Omitting the index ¥ in the notation of these curves, we shall use instead
of relation (3.2) the equivalent relation

(pdq—qdp—2Hdt = { pdq—qdp— 2Hd: (3.4)
5 s,48,

4, Stability. Let the curve S,be defined on the surface |H,|= w*(w — const, 0 > 1),

when ¢t= 0, such that the integral curves beginning on S, yield on the surface |H,|=1
the curve §;. We shall consider the two-dimensional manifold of initial conditions ¢, that
contain the curve Ss+ when = 0. The trajectories that begin on o0, determine for every
t the two-dimensional manifold o, and in a finite time interval belong to the three-

dimensional integral manifoléd I in the extended phase space. For each value of the parameter

t we have /11/
_;‘1 (p.dg;, — qidp))= 2ndE

where the variables £,y are mutually independent on I, if they are independent on O, ™.
(*In thise case the problem of reduction consists of determining the integrating multiplier
for the equation M (z,y)dr-- N(r.y)du=0 which is specified in a restricted closed region of the

plane). In the latter case we cbtain on I the equation
;‘] (p;idg; — q.dp;)— 2H dt = 2(nd: —T dt) (4.1)
where the function T depends on &, 7.t and 7. By the same token a canonical system with

one degree of freedom and the Hamiltonian T is constructed on I in the variables En.
We select ¢, so as to have the independent variables R, q defined on g,

D (pidg,—q.dp)=2Rd;. R=|H,]|
=1
Such a selection of g, is always possible in an infinite number of ways.

On trajectories of the input system belonging to I we have

4R ar dq

gt 8¢ Tar

QI N
S

The first of these eqguations car alsc be obtained by differentiating R by virtue of the
initial Egs. (1.1) and {(2.3). We have

6T 6¢ = y*R""F (R, ¢. . 1)

where the function F does not exceed in absolute value some constant M which is independent
of y in the region R < w?,
To determine gI'dR we use the equation

n

8H |, oH oy o aI
S (ot + 0 d2)—om=a(n gy 1)
Fpus
obtained from (4.1) and valid along the trajectories of the system. We shall consider it for
each (g, t) as a differential eqguation ir R and, taking into account the expression for dl/dg,
we obtain

F=a(y,) R =vR* + v°RT, (R, @, v, 1)

where the function T; in region R < ©® is limited in modulus by the finite number M,,
and the sign of 9?R® 1is the same as the sign of the quadratic form (3.1). It is obvious
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that it is always possible to assume a(y, t)=0 since otherwise the canonical transformation
(R, @) > (R, ¢);% = @ — fa(y, t)dt reduces I to the form in which g (v, ) = 0. Hence along the
trajectories

9T/OR = 2R + Y@ (R, ¢, v, 1), |® |< M,
where the constants M,, as well as M; are independent of ¥.
It is now possible to evaluate the integrals in (3.4). Along the trajectory S we have

L+t b
A= §dg=22¢ | Ryat + 990y, (O < Mo

3 4

where R (t) is the value of the variable R along the trajectory S, and ¢, and ¢ + 1 are
values of t at points & and B, respectively. Hence

8 i==1

" topt
{ 3 (pdgi—aidp)—2H at=2¢[+ | QRO—1) dt]+ 1,
8,45, i=1 [
n -1
(3 (pdg.—gidp)—2H dt =22 { Rrt)dt 4 y"Vo, |Vag] < Myt
1

where the finite number AM; is independent of v, 1.
After these calculations, (3.4) can be rewritten in the form
Lt
{ H—=ROPa=y", |V]< M

4

Hence, in view of the choice of § we finally obtain

k4

L
+< \ {1 — R@OPdt < yMyt

i

Since the constant M, is finite and independnet of v, T, the double inequality
obtained cannot be satisfied for a fairly small Y.

The contradiction obtained proves that, when the quadratic form (3.1) is of fixed sign,
the system cannot be unstable. Hence the following theorem holds.

Theorem 1. The periodic system (1.1), (1.2} is Lyapunov unstable, if the gquadratic
form (3.1) is of fixed sign in the positive cone r; >0 (i =1 ..., n).

hat the condition of fixed sign of guadratic

o]
Remarks. 1 . It follows fromthe proof tha
cng the whole numerical axis — o0 < t < oo

form (3.1) ensures the Lyapuncv stability al
(permanent stability /8/).

20, From this there fcllows the conclusion cf the Arncld-Moser thecorem /1-4/ for
systems with one degree of freedom (n = {i.

5. The autonomous system. Obviously the guadratic form (3.1) of fixed sign alsc
ensures the stebility of an autonomous system. However, the result can be amplified in this
case. 1Indeed, an autonomous system admits of the energy integral H =k = const and the
curves §, §, and S, can be selected on the integral surface H =k  If the curve 5
contains points from the d—neighbourhood of zero, then for the respective integral surface
we have A~ 6. The number & can always be assumed to be smaller than y* and we can
construct on the integral surface a periodic system with n —1 degrees of freedom. All
estimates in Sect.4 were made with an accuracy to terms in v® . Hence taking into account
the relation H = h(|h |<¥), we find that the condition of stability is the fixed-sign form
of the guadratic form (3.1) on the linear manifold.

2}.;'1'5-—-—0 (5,1
=1
The proof may be cobtained without constructing the respective periodic system with n -1
degrees of freedom while remaining within the limits of the reasoning of Sects. 3 and 4.
Indeed, with the condition that the guadratic form (3.1) be of fixed sign on the linear
manifold (5.1), the curve §, and the manifold o, can be selected in the region [h|< %
Then the following estimate

n

T
| z} A<t X s o B {5.2)
de i, j=

holds on s, where the finite number B independent cf v and h.

The formuls
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n n
A= 3 aprEx(d Ay
i, =1 i=1
(the sign infront of x is the same as that of the quadratic form (3.1) under condition (5.1)
and when r=0;x is a properly selected to be constant) in the region |k|<y* does not
become zero when r& 0. Hence o, can be selected so that the independent variables R, ¢
on I are defined as follows:

n
2 (p{dqi - q,-dP,-) = 2Rd¢v Rt = |A l
(=1
The Hamiltonian function can now be written in the form
n n
H=YrhrzvRTw? (3 4 +vHY (g, 1, 1)
i=1 i=1

Now taking the estimate (5.2) into account, the function I is determined in region
|| <y on the manifold £ as in Sect. 4. Further considerations, that are alsc independent
of the specific value of the constant energy, repeat the reasoning of Sect. 4, if the curves
3¢ and §, were selected on the surface R =1 in the region |r|i<g ¥

Let us formulate the result obtained so far.

Theorem 2. The autonomous system (1.1), (1.2) is Lyapunov stable, if the system of
equations

}: hiri =0, > oerri=0, =0 (i=1,....n) (5.3)

i=1 i,j=1
has no other solution than a trivial one.

Remarks. 1°, The application of Theorem 2 to investigate the stability of the steady
motion of a mechanical system with cyclic (ignorable) coordinates ensures the absolute
stability, since the proof mentioned above is independent of the specific value A¢, (@ = n-1,

... M) of the perturbation of cyclic coordinates; one has only to bear in mind that |Ac, |<<+¥%.

2°, when n=2 the stability condition has the form
1ah? — 2e19hyly o Cply® # 0
which is the same as the condition of the Arnold-Moser theorem /1-4/.

6. Some generalizations. The method used toc prove Theorems 1 and 2 enables us
to extend these theorems to canonical systems with a non-analytic functicrn H. The respective
conditions for H are easily derived. On the other hand, the conditions of Lyapunov stability can
alsobe obtained for an analytic function H, when the condéitions of Theorems 1 and 2 are satisfied.
For instance, when there are nc rescnances in the system up to the 21t-th order, the Hamiltonian can
be reduced to the form /8, 9/
n l,
H= 3 ri+ 1% Hy+ HY(p.q.1t)

i=1

n
Hy= ...l HY =90 T
! 1.+..§1n=1 vl n’ ((&gl ) )
(2ri=p? + ¢ ki oy, .1, — const; k5= 0)

when the conditions of stability become:
for a periodic system we have the fixed-sign condition
L
HO= S (—1)H,

=2
and for the autonomous we have the fixed-sign condition of H'® on the linear manifold
(5.1).
Theorems 1 and 2 are special cases of these statements when [, = 2.
A further generalization is connected with the investigaticn when the following
resonances are present:

mpay+ ... F Mg =m,, |ml4+ ...+ m|=m (6.1)
where m;, m, are integers m, = 0 for the autonomous problem, and the number m is the order
of the resonance /12/. Note that for resonances of order higher than the fourth, the
Hamiltonian of the system reduces to the form (1.2) /9,12/ and the problem of stability is
solved by Theorems 1 and 2. Hence only resonances of the second to fourth order require
additional consideration.



For third-order resonances, the third-power rescnance H3;* in the normalized Hamiltonian
is generally non-zero. However when in a series of numbers m,, ..., m, there is no change of
sign, the condition H,* =0 leads to Lyapunov instability /9,12/. When condition H,*=0
is satisfied, the problem of stability is solved, as above, by Theorems 1 and 2.

For a resonance of the second or fourth order the resonance form of the fourth power H,*
in the normalized Hamiltonian contains besides terms of identical resonance (3.1) additional
resonance terms. The problem of stability in these cases is solved by Theorems 1 and 2
independently of the specific form of these terms, if in their formulation we substitute H,*
for the function H, .

7. The fourth-order resonance. Let us obtain the sufficient conditions of
stability for coefficients of the form H,* for the fourth-order resonances. In this case we
have /9,12/

H*=Hi(ry, ... r)+g2{r, ..., Tp)cosy
z(ry, .. "n) = ryfmit rnlmnl 5oV =me; + o+ mae, = myt (1'1)
where g is a constant, r, ¢; (i =1,...,n) are polar coordinates, and the function H,* (r;... .,

rn) is determined by (3.1).
The Lyapunov instability conditions in this problem have the form /9,12/

]glml"“’f ...m,,m"’2> ’HI (m11~ ~-,mn) l1 ml>0
(i=1,...,n)

When this inequality is not satisfied the sufficient Lyapunov conditions can be derived
using the generalization of Theorems 1 and 2. The derivation of such conditions generally
requires the analysis of the fixed-sign property of the homogeneous fourth-order function H,*

of the variables p;,.q; (i =1,..., n}h However, in this problem the function H,* has a gquite
definite form, and depends on n - 1 variables r;,...,T,.v. The sense of these variables
implies that the problem consists of cobtaining the conditions for the function H,* to be of
fixed sign relative to the variables r,.... T, in the positive cone.

It will be seen that the necessary condition for the function H,* to be of fixed sign
is for the guadratic form H; to bé of fixed sign. Let us assume that Hy is of fixed sign.
Then the following lemma holds.

Lemma. The function H* is positive (negative) definite, if and only if the function
Hf=H,— |glsHS=H,+ 1glz)
Proof. From the inegualities valid in the positive cone when r=0
He> 0 (He<h, {gl>geosy, z 20

there follows the positive (negative) definiteness of the function H,* when the function &, ,
is positive (negative) definite. The converse statement fcllows from the fact that, when H,*
is of fixed sign, the function H{ can only be of fixed sign since H,* = H, on the set gcosv=
— | gfigeosy = |g|).

The lemma is quite useful in obtaining the sufficient conditions of stakbility of the
coefficients ¢;;{i.j=1.....n) anéd g of the form H,*. This is important for sclving
specific mechanical proklems. Thus in the case of resonances 44, = m, and 2 {}; =& )= m,the
lemma immediately reduces the problem of the fixed-sign form of H,* to the respective problem
of the quadratic form of the variables r;.....r, in the positive cone.

Below, we shall investigate periodic systems with two degrees of freedom, and of
autonomous systems with three degrees of freedom. For simplicity, we shall consider only the
case when in a set of numbers n,...., m, there is nc change of sign. Moreover, we confine
ourselves tc obtaining solely the conditions cf positive definiteness of the function  H,*.
Note that the case when m, and m, are of opposite sign (m;m <« 0) is investigated similarly.

A periodic system with two degrees of freedom. Fourth-order resonances

4 = M, 2y = ) =mg. kg v 3k = m,

are possible in this system.
According to the lemma the problem of the positive definiteness of the function H* for
the first two rescnances reduces to the positive definiteness of the quadratic form
Hy o= byyr? — 2byaryry — bpord? (7.2
in the positive cone. For the resonance 44, = m, we have

by = oen Tlgle b= o b =

and for resonance 2 (k — 72,0 = m,
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by=cn bp=cp—|g1/2, by=cy

The conditions of positive definiteness of (7.2) are easily cobtained. The sufficient
condition consists of the satisfaction of one of the group of inegqualities

a) by >0, 520, by >0
b) by >0, by <0, byby — bp? >0
The problem of the resonance 4; + 3/, = m, is solved differently; we have
HO = cun® + 25y = epr® — | g [ 1 n 1.3

As indicated above, the necessary condition for the function H,*, and hence also FH,,
to be positive definite is the positive definiteness of H,. Hence the inequalities ¢,;>0,
6 >0 must necessarily be satisfied in (7.3). Under these conditions the function H,° is
positive definite along the straight lines r,=0 and r,= (. We introduce outside the
straight line r, =0 a new variable y=r)/r,. Then, when r =0, we have

He=r2fy), 1) =cen+ 200 — ey — [ 2] UV;I_

Hence the necessary and sufficient condition for H,* to be positive definite is in this
case the lack of a non~negative root of the eguation f(y) = 0.

We have thus obtained the conditions for the function H,* to be positive definite for
all cases of fourth-order resonance of a periodic system with two degrees of freedom. The
conditions of negative definiteness are derived similarly. It will be seen that if the
coefficients ;(i.j=1.2) and g analytically depend on the parameter e, the form #,* is of
fixed sign when e=0, and when =0, and for fairly small =0 the form H,* is also of
fixed sign.

According to the generalized Thecrem 1, the satisfaction of these conditions for the
function H;* to be of fixed sign ensures the Lyapunov stability of the system.

The autonomous system with three degrees of freedom. According to the generalized
Thecrem 2 the sufficient condition of Lyapunov stability for this system is the fixed sign of
the form H,* on the linear manifold (5.1) when n=3. As above, we shall limit ourselves
to obtaining the conditions of positive definiteness cf the function H*. The conditions
of negative definiteness are derived similarly.

All possible fourth-corder resonances reduce in this system to twe resonances

M3y = U, by Lk, =20, =0
For the first of these resonances the ineguality 7,2,< ( must necessarily be satisfied,
and function H,* has the form
Hy* = Hy Uy orae 1 = gy 7ra #cos v

Hence on manifold (5.1) we have

v,oe, -

Hy =Dty rd—1lgir ry: (7.4)

D (ryo roo = dyn® — 2dppnry — dprp? (7.5)
72

d. = Ly o 20, = —1,2

it i 3% g2 N8 g ti +2)

J ha 7 ) raks
o= Cia— ¢ 2T = T — [‘-‘;A _—
1 1 1w T 875 3 T4

The function (7.4) has the same feorm as (7.3). Hence the subsequent analysis of the
fixed sign of K, is the same as the respective analysis of (7.3). However the suprlementary
condition

1
r3=—TS‘(},)nf}q’2)>0

must be taken into account.

Let us summarize the results obtained.

The necessary and sufficient conditon for H,* to be positive definite on the manifeld
(5.1) is

fo—1elvVi#0 f, (v = dy+ 2dpy + dypy?

when y>3, if ma; >0, and 0 <y < 3, if 70, < 0.

The analysis of resonance %, =7%,+ 24, =0 is similar to the preceding. Depending on the
sign of the constants A, i, %, we obtain three groups of conditions,.

Let us formulate the final result.

The function #,° on the manifold (5.1) has the form
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where D {r, r;) is determined by formulae (7.5). The necessary and sufficient condition for
Hy» to be positive definite on manifold (5.1) is

Jo @) wI"I\A Vi+—— va> G

where, depending on the signs of the constants &, A, A , the variable y varies within the
limits

al by >0, g0
b} bk < O MA3 >0, > —h/h,
C) Mry <0, Mhy <0, 0y € ~2hy

8. The stability of triangular libration points of the restricted three-
body problem. The statement of the problem in the linear approximation and, also, fundamental
results of a non-linear analysis of this problem are given in /9/. Using these results, we
shall confine the examinationtc twoe special cases.

The plane elliptic three-body problem. The system in this case has two degrees of freedom, and
the equations of pertrubed motion have the form (1.1) with a Hamiltonian peridocially dependent
on time. In addition, the Hamiltonian H depends on twe parameters, p. the ratio of the
mass of one of the two attracting bodies to the sum of masses of both bodies, and  the
eccentricity e.

According to /9/, for a fairly small eccentricity and all values of p from the interval
(8.1}

002420433, . = p, << p < p* = 0,0385208. . . {8.1)
except those corresponding to the resonances
Ay 20 o= 0, 3k — Ry =0, Bhy = 2 8.2y

in the normalized Hamilternian, the ferm H* =0, and the fourth-order form H,* has the forn

He* = lp.eyr)® — 2600 (W &) ryry = £ {n. ) 1" == g (g, &) 7™V ™0 cos v 8.3
When there are nc fourth-orier rescnances, if gi{p.e) =0, while on cother resonance
curves possilkle in the interval (8.1}
by = hy =20 Bhy — ym Bk — 20 =2 A — 3= —1, 4k =3 (8.4)
the function g depends only on € and vanishes when = {J, The coefficients ¢ (i, j=1.2)
are alsc analytic funciicns ¢f e, and when =0 tney take positive values, and ¢, {u, 0) > 0.9,
ey (1. 0) > 10,0, e (0. 0) > 7.5 Therefore fcr a fairly small eccentricity (0 (e<€ 1 the
function (B.3) is positive definite irrespective of the presence cf resonances (B8.4). The

following thecrem Zollows from Thecrem 1 and its generalization,

Theorem 3. The triangular libration points of a plane elliptical restricted three-body
prcblem for a f“' iy small eccerntricity is Lvapunov stable for all values of y from the

interval (8.1), excluding those corresponding to resonances (8,2).

Remark. For u belongi"' to the interwval (8.1) and small e the resonance 3i, = -2
remained uninvestigated. It reguires the analysis of terms of order ¢ and higher in
coefficients cf the normalized Eamiltonian. According to /9/ the resonances -+ 2, = 0, 3 —

=0 result in instability.
For arbitrary non-resonancd, in the sense of the lack of second-fourth order rescnances,

values of B, € » &s the result of the numerical investigation in /13/ in the stability region
MS (Markeyev-Sokol'skii) regions were separated to a first approximation where the form (2.1)
is of fixed sign (see alsc /¢/, pp.€8~1€9, Figs. 18 and 19). The application of Theorem 1

tc these results establishes the following theorem.
Theorem 4. 'The triangular libration points of the plane elliptic restricted three-body
problem are Lyapunov stable for all non-resonance parameters u,e from MS regions.

The three dimensiocnal circular three-body problem. In this problem the Hamiltonian doss
not explicitly depend on time and n = 3. It is shown in /9/ that for all p from the
intervals
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0< p<<0,01083 .. .; 0,016376 . . . < p < y; = 0,024293. . . 8.5)
My < u << 0,038520. ..

system (5.3) has no other solution than the trivial. Hence we have the following theorem.

Theorem 5. The triangular libration points of the three~dimensional restricted three-
body problem is Lyapunov stable for all values of the parameter p from the interval (8.3).
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ESTIMATE OF THE STABILITY OF A DYNAMIC SYSTEM ON THE BASIS
OF THE QUASISTATIONARITY PRINCIPLE *

YU. M. VOLIN

The following problerm is ferrulated and sclved: in what cases, and on what
basis for examining the stability of the statiorary sclution of a
"quasistaticnary" syster can we judge the stability of the stationary
solution of the initial systen.? The thecrems which formulate the necessary
and sufficient conditions of the stability are proved. It is shown how

the results obtained can be used to examine the thermal stability of a
chemical reactor.

1. Suppose it is reguired to examine the stability of the stationary state of a dynamic
system. When using Lyapunov's first method this problem reduces (if we do not consider special
cases) tc the problem of verifying the stability of the zeroth solution of the linearized
system. We will assume that the latter can be represented in the form

dy ) a- . —_ D -
T='_1y_B':' a—{::(‘y—D:. y:}? . = R (1.1)
We will also introduce the notation z = (y,.....¥yp 2. ..., 5)7, m + 1 = n, where the index

T denotes transpositicn,
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