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THE STABILITY OF MULTIDIMENSIONAL 

V.N. TKEAI 

HAM~LTONIAN SYSTEMS* 

The Lyapunov stability of the zero solution of autonomous periodic 
Hamiltonian systems is investigated. It is assumed that the linearized 
system is stable, its matrix can be reduced to diagonal form, and all 
characteristic indices (or roots of characteristic equations) are purely 
imaginary. The problem is completely solved for periodic systems with 
one degree of freedom, and for autonomous systems with two degrees of 
freedom /l-7/. The conditions of stability for systems with an arbitrary 
number of degrees of freedom are obtained below. The results are used to 
solvetheproblemof the Lyapunov stability of triangular libration points 
of the restricted three-body problem (plane elliptic and three-dimensional 
circular). 

1. Statement of the problem. Consider the problem of the Layapunov stability of 
the zeroth solution of the canonical system with an analytic Hamiltonian function H (PI 93 t) I 
2n periodic in time t (or not explicitly dependent on time) 

dP dli dp irH 
x- ---t aq x=7&r H(O,O, t)rO (1.1) 

We will assume that the linearized system is stable, a 11 its characteristic indices (or 
roots of the characteristic equation) are purely imaginary and different, and that the system 
has no third- and fourth-order resonances. We shall investigage the autonomous problem, when 
the Hamiltonian H is not a function of fixed sign (when it is, the stability problem is solved 
by the Lagrange-Dirichlet theorem). 

With these assumptions the Hamiltonian of the system reduces to the form /8,9/ 

(1.21 

where the function H" (p,q, t) contains terms .p.q of order not lower than the fifth. The 
coefficients cil in (1.2) in terms of coefficients of second- and fourth-order forms in the 
expansion of the initial Hamiltonian in series in p,q were calculated in /9/. 

As in /l-4/, problem (l.l), (1.2) has, for n = 1, a periodic system, and for n = 2 in 
the autonomous case, has a positive solution in the sense of stability, if c,,;+ 0 and c,,i.,* - 

?c&.: + c*&,' i: 0, respective1.y. The problem of Lyapunov stability for n> 2 in the periodic 
case and for n> 3 in the autonomous case has so far not been solved. 

2. Instability. Hamiltonian systems are special cases of systems with invariant 
measure. A simple statement can be shown to hold for these systems, which in spite of its 
simplicity, sheds light on Lyapunov instability in the neig.hbourhood of the singular point. 
Since we are seeking in the first instance a solution of problem (l.l), (1.21, we shall 
limit the analysis to a 2 n periocic or autonomous system specified by the differential 
equations 

dx/df = X(x.!), X(O,t)E@, divX.=@ (2.1) 

x = (vr,. . . ( 4, x = ix,, . I .s Xr) 

It is assumed that the right sides of (2.1) ensure the existence, uniqueness, and 
continuous dependence of solutions on the initial conditions in some neighbourhood of zero, 

We shall say that the property S is satisfied by system (2.11, if e>O can be found 
that, no matter how small 6>0. a point will be found in the Gneighbourhood such that a 
trajectory beginning at that point leaves the neighbourhood of a in a finite time for 
increasing as well as decreasing time t. 
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Lemma. The property of Ljrapunov instabilitjj of the zero solution of system (2.1) for 
0 < 1< -Loo or -cc < t< 0 is equivalent to the property S. 

Pr30f. Suppose that the zero solution of the periodic system (2.1) is Lyapunov unstable 
when ogt<-+cC. Then, in an arbitrary small bneighbourhood of zero there is at least 
one point which, moving according to (2.1), leaves that e-neighbourhood in finite time. 
By virtue of the continuous dependence on the initial condition a certain set G of points 
of non-zero measure belonging to the 6-neighbourhood will also leave the E-neighbourhood 
after a finite time. 

As we are now interested in the previous history of the set G we shall consider Eq.(2.1) 
when the time t is reduced. 

When t is changed by 23 , (2.1) defines a one-to-one continuous mapping T of the 
"phase" space (X) into itself. That mapping maintains the phase volume. Let TkG(k = @, J-1, i_ 
2, . ..) be the image of the set G after n-tuple mapping T. By virtue of the instability Ge 
set T"*G for some k. lies outside the e-neighbourhood. If when t is reducedalltrajectories 
beginning in G, belong to the E-neighbourhood, then T”“” G (k = -k,, -2k,, -3k,. .) alsc 
belongs to that neighbourhood. But this is impossible by virtue of the Poincarg theorem on 
return /lo/, since the measure of Gis non-zero, while the measure of the c-neighbonrhood 
is finite. Moreover, almost all points of G, in the meaning of measure, must leave the e- 
neighbourhood. 

Thus the set G contains at least one point such that the trajectory beginning at tiiat 
point will leave the e-neighbourhood in a finite time for increasing as well as decreasing 
t. Obviously, such a point also exists for an instability in --o;<f<O, and also for an 
unstable autonomous system. 

(l.lL3i1.21 L 
Basic idea of the proof of the theorem on the stability of system 

Tc use indirect proof we introduce an integral relation which ~111 be 
fundamental in obtaining the respective contradiction. In the case of a periodic system a 
contradiction is obtained, when the quadratic form 

is of fixed sign in the positive cone r, .- 0 (i = I... ,. I)). 
Let us consider an unstable periodic system with the Hamiltonian function H, of fixed 

slgr.. We define the *;-neighbourhood of zero, bi' the inequality 1 H, I< y4. 
Due to the eq.uation of motion (l.l), (1.2; the derivative Hq’ of the fiinction H, d:vlies 

the phase space (p.q) for every t into three regions: H; < 0, Hp’ = 0, H; > 0. By virtue 
of maintaining the phase volume, and the assilmptior. on instability, each of these regicns is 
non-empty. For all pcints of the surface lH4 / = 1%’ cf region H,H; < 0 , the integral 
curves enter the inside of that surface as t increases. 

We denote by S,(y) the curve defined on the surface iH4 / = y’ as follows. The inequality 
H4H4’ < 0 holds on S, (.t), and H,’ = 0 is ociy at one of the ends of the curve S, (p) at the 
point c ('v.). All integral CurveS that pass through s, (v)' * ('Except the Curve passing 
thrcugt CL~)! and enter the region IH, 1<y4, leave it after a finite time. The integral 
curve S(v) passes through the other end of curve S1 (y) , the point -4 (u) . 

The integral curve S (v) intersects the surface IH4 1= y4 at the points A (yJ and 

B (I.1 , and the condition T~>T'? is satisfied on it 
’ 

Here T is the time of motion from 
point A (I>) to point B(v) and S (v) , and rl is the time of motion in the region \Hc I < 
y’ 4 . 

The curve s (*,'I always exists for any T(O(I:<E). Indeed, the assumption of instablity 
imy;lies that property S is satisfied. Hence the integral c'urve which enters region IH, 1-C y4, 

passes throu.gh the &neigiibo,urhood of zerc, and leaves the region \H, j< 7’ after a finite 
time, does necessarily exist. The number 6 may be arbitrarily small, an6 besides, the 

derivative of the function r = rl - .., +-r, by virtue of (1.11, (1.2) is of order PI. Hence 

the smaller 6 the larger 1, wili be for a given 9 . 
The curve s,(y) may also be constructed for some I?(@< v< E) in accordance with the 

property S. 

Let us denote by Q (~1 the connected set of points on the surface \H,/= e' on which, 

when t = 0, the trajectories, whrch enter and leave the region IH,j<@ after a finite 
time, begin. Now suppose that it proved impossible to construct S,(Y) when y= e. Then 

each set Q(E! containing points A,(E) has no bo.undary points where H,' = 0. Let US 

consider 01 (E'j , the arbitrary closed connected set of point belonging to Q (~1. The 

trajectories beginning or. Q,(E) provide for some I' on the surface IH41=Y’ a connected 

closed set Q1 (i‘) that contains the pcir.ts H,' = 0. The construction of the curve S, (;,I 1 

QI (i'! will thus be compieted, if Q1 k) is selected SC that Q1 Pi) contains the point A I’/ 

This is alwayc possible bJz \,irtue of property S. 
The trajectcries that pass through s, (;i. with subsequent intersection of the surface 
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I Hc I = y’ r yield the curve S,(y) whose ends are at the points B (v) and c (v). Curves 
S(y),S,(y) and St(v) belong to a two-dimensional surface in extended phase space, and that 
surface isproduced by the integral lines of the l-form p dq - Hdt. Hence with the appropriate 
choice of integration direction from the point A (y) to the point B (Y) , we have 

S pdq-Hdt- S pdq-Hdt (3.2) 
SW s,tv,+~tv~ 

Changing the scale by replacing the variables p,q for PY* QY 1 we shall subsequently 
consider the Hamiltonian, which depends on the small parameter 0 

(3.3) 

For a system with the Hamiltonaian (3.3) curves S (y), S, (y) and S, (v) are defined on the 
surface IHa 1 = 1. Omitting the index y in the notation of these curves, we shall use instead 
of relation (3.2) the equivalent relation 

ipdq--qdp-2Hdt =,I, pdq-qdp- 2Hdt 
2 t 

(3.4) 

4. Stability. Let the curve S,be defined on the surface 1 H, I = o’(o -- const, o > I), 
when t=@, such that the integral curves beginning on S, yield on the surface IH, I= Z 
the curve S,. We shall consider the two-dimensional manifold of initial conditions c0 that 
contain the curve s, , when t=o. The trajectories that begin on u0 determine for every 
t the two-dimensional manifold 0, and in a finite time interval belong to the three- 
dimensional integral manifold x in the extended phase space. For each value of the parameter 
t we have /ll/ 

where the variables E, r) are mutually independent on Z, if they are independent on uO*. 
(*In thise case the problem of reduction consists o f determining the integrating multiplier 
for the equation Al(~.y)drin'(~,y,dy=O which is specified in a restricted closed region of the 
plane). In the latter case we obtain on X the equation 

x ” ( d pi q, - q, dp,) - 2H d! = 2 (rj d; - l- dt) 
I=-1 

(4.1) 

where the function r depends on t9 11. : and p. BJ' the same token a canonical system with 
one degree of freedom and the Hamiltonian r is constructed on Z in the variables E;, rl* 

We select c0 so as to have the independen: variables R,g defined on co 

Such a selection of co is always possible in an infinite number of ways. 
On trajectories of the input system belonging to 1 we have 

dR ar dT ar _=-- 
df ap 9 dr=m 

The firstofthese equations can also be obtained by differentiating R by virtue of the 
initial Eqs. (1.1) and (3.3). We have 

dl- 6q = p3R"+ (R, (i, y, t) 

where the function F does not exceed in absolute value some constant M which is independent 
of y in the region R < o?. 

To determine ar,aR we use the equation 

-ZH=? R$ 
( 

. 

4 

obtained from (4.1) and valid along the trajectories of the system. We shall consider it for 
each (9, t) as a differential equation in R and, 
we obtain 

taking into account the expression for N:dm, 

r = a (p, t) R f y*R* + +r, (R, cp, p, t) 
where the function rr in region R < o* is limited in modulus by the finite number 
and the sign of yZR” 

Mr, 
is the same as the sign of the quadratic form (3.1). It is obvious 
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that it is always possible to assume a(y* t)=O since otherwise the canonical transformation 
(R, m,)+(R,$);$ = cp - ja(y, 1)dt reduces r to the form in which II (T,~)E 0. Hence along the 
trajectories 

X:C?R = zt2y% + y"*@ (RR, 8, y, Q, /@ I< M, 

where the constants Ml, as well as M, are independent of y. 
It is now possible to evaluate the integrals in 13.4). Along the trajectory S we have 

t,+r 
Aq= 1 dq:= 

'.+'i 

6 
+2y2 $ R(t)dt+y%b, /@ii<M*~ 

where R (t) is the value of the variable R along the trajectory S, and t, and t, + r are 
values of t at points A and B, respectively. Hence 

where the finite 
After these 

~~,(p~dq~-qidp,)-2Hdi=~~y2f’~‘R2(t)dt+yaV,. / VI.8 I < llJ3T 

number hf, is independent of y, T. 
calculations, (3.4) can be rewritten in the form 

i,+r 
$ [i-R(f)]“dt=yl‘, ) v j < M3T 
1 

Hence, in view of the choice of S we finally obtain 

I,;T 
+ < \ [ 1 - R (t)]? dt < yd%fg 

i, 

Since the constant Ms is finite and independnet of ?,'I, the double inequality 
obtained cannot be satisfied for a fairly small y. 

The ccntradiction obtained proves that, when the quadratic form (3.1) is of fixed sign, 
the system cannot be unstable. Hence the following theorem holds. 

Eleorem 1, The periodic system (l.l!, (l.Z! is Lyapunov unstable, if the quadratic 
form (3.1) is of fixed sign in the positive cGne r, 2 0 (i = 1...., n). 

a 
Remarks. 1 . It follows fro-the proof tf~at the condition of fixed sign of quadratic 

form (3.1) ensures the Lyapunov stability alcng the whole numerical axis --<t<+m 
(permanent stability /8/I. 

20. From this there fellows the conclusion of the Arnold-Moser thecrem /l-4/ for 
systens with Gne degree cf freedom (I.= 1;. 

5. Tile autonomous system. Obviously the quadratic form (3.1) of fixed sign a&c 
ensures the stability of an autonomcus system. However, the resuit can be amplified in this 
case. Indeed, an autonomous system admits of the energy integral H = h = const and the 
curves s, s, and s, ran be selected on the integral surface H = h. If the curve S 

contains points from the &-neighbo,urhood of zero, then for the respective integral surface 
we have h- 6. The number 6 can always be assumed to be smaller than y3 and we can 
construct on the integral surface a periodic system with R - 1 degrees of freedom. All 
estimates in Sect.4 were made with an accuracy to terms in YS . Hence taking into account 
the relation H =-_ h ( 112 I< $j, we find that the condition of stability is the fixed-sign form 
of the quadratic form (3.1) on the linear manifold. 

The proof may be obtained without constructing the respective periodic system with n - 1 
degrees of freedcm while remaining within the limits of the reasoning of Sects. 3 and 4. 

Indeed, with the condition tiiar the quadratic form (3.1) be of fixed sign on the linear 

(5.11, the curve Sl and the manifold o0 can be selected in the region I h I Q 9. manifold 
Then the following estimate 

holds on Z, where the finite number @ independent of P and h. 
The formula 
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(the sign infront 
and when r#O;x 
become zero when 
on H are defined 

i,Tq . . iq 

of x is the same as that of the quadratic form (3.1) under condition (5.1) 
is a properly selected to be constant) in the region IhI<? does not 

r# 0. Hence o0 can be selected so that the independent variables R, P 
as follows: 

n 
z (p$q, - q@J = 2Rdv, R* = 1.i 1 
61 

The Hamiltonian function can now be written in the form 
n 

H = x ii', z*;zRz; xyz f '$ Airijz + v~(l)(p. g, T, t) 
14 is1 

Now taking the estimate (5.2) into account, the function T is determined in region 

IhI<?" on the manifold H as in Sect. 4. Further considerations, that are also independent 
of the specific value of the constant energy, repeat the reasoning of Sect. 4, if the curves 

& and S, were selected on the surface R = 1 in the region Ihl<v. 
Let us formulate the result obtained so far. 

Theorem 2. The autonomous system (l.l), (1.2) is Lyapunov stable, if the system of 
equations 

+ ?.,r, IO, 
,=i $$I CJ,T,= 0, 

ri>O (i=l,...,n) (5.3) 

has no other solution than a trivial one. 

Remarks. lo. The application of Theorem 2 to investigate the stability of the steady 
motion of a mechanical system with cyclic (ignorable) coordinates ensures the absolute 
stability, since the proof mentioned above is' independent of the specific value Ac,(u = n-+1, 
. . ., K) of the perturbation of cyclic coordinates; one has only to bear in mind that IAc,l<y3. 

Z". When a=2 the stability condition has the form 

cni.,z - SC,,& + c*&,* # 0 

which is the same as the condition of the Arnold-Moser theorem /l-4/. 

6. Some generalizations. The method used to prove Theorems 1 and 2 enables us 
to extend these theorems to canonical systems with a non-analytic function H. The respective 
conditions forH are easily derived. On the otherhand, the conditions OfLyapUnOV Stability can 
alsobe obtained for an analytic function H, when the ccnditions of Theorems land2 are satisfied. 
Forinstance,whenthere arencresonancesinthe systemuptcthe 21,-thorder, theHamiltonian can 
be reduced to the form /0, 9/ 

(2rz = P12 -j- qlz; A,, cl, _i,, - const; i.,# 0) 

when the conditions of stability become: 
for a periodic system we have the fixed-sign condition 

H(O)= % (1 - 1) H?, 
i=2 

and for the autonomous we have the fixed-sign condition of Hi" on the linear manifold 
(5.1). 

Theorems 1 and 2 are special cases of these statements when I, = 2. 
A further generalization is connected with the investigation when the following 

resonances are present: 

m,%, + . + rn& = m,, Im,I+...A Im,j=m (6.1) 

where mi, m, are integers mL = 0 for the autonomous problem, and the number m is the order 
of the resonance /12/. Note that for resonances of order higher than the fourth, the 
Hamiltonian of the system reduces to the form (1.2) /9,12/ and the problem of stability is 
solved by Theorems 1 and 2. Hence only resonances of the second to fourth order require 
additional consideration. 



For third-order resonances, the third-power resonance Ha* in the normalized Hamiltonian 
is generally non-zero. However when in a series of numbers m,, . . ..m.,there is no change of 
sign, the condition H,*qO leads to Lyapunov instability /9,12/. When condition H,* z 0 
is satisfied, the problem of stability is solved, as above, by Theorems 1 and 2. 

For a resonance of the second or fourth order the resonance form of the fourth power H,* 
in the normalized Hamiltonian contains besides terms of identical resonance (3.1) additional 
resonance terms. The problem of stability in these cases is solved by Theorems 1 and 2 
independently of the specific form of these terms, if in their formulation we substitute Hd* 
for the function H 1 * 

7. The fourth-order resonance. Let us obtain the sufficient conditions of 
stability for coefficients of the form H,* for the fourth-order resonances. In this case we 
have /9,12/ 

H,* = H, (rl, ., rn) i gz (rl, . ., rn) cos v 

2 (r,, ,, rn) = rllmll’z . rJmn”?, v = m,cp, + . + mnqn - m,t (7.1) 

where g is a constant, r,,(r, (i = 1. ..,n) are polar coordinates, and the function H,* (rI.. ., 
r,) is determined by (3.1). 

The Lyapunov instability conditions in this problem have the form /9,12/ 

j g 1 mlm’2 . m,mn'2 > 1 H, (ml, ., m,) 1, mi > 0 
(i = 1 3 .> n) 

When this inequality is not satisfied the sufficient Lyapunov conditions can be derived 
using the generaiization of Theorems 1 and 2. The derivation of such conditions generally 
requires the analysis of the fixed-sign property of the homogeneous fourth-order function HI* 
of the variables pi.qi (I = 1,. .,n). However, in this problem the function H,* has a quite 
definite form, and depends on n i 1 variables rI. . . ., r,. P. The sense of these variables 
implies that the problem consists of obtaining the conditions for the function H,* to be of 
fixed sign relative to the variables rl?. . . . rn in the positive cone. 

It will be seen that the necessary condition for the function Ho* to be of fixed sign 
is for the quadratic forn Hb to be of fixed sign. Let us assume that H, is of fixed sign. 
Then the following lemma holds. 

Lemma. The function HI* is positive (negative) definite, if and only if the function 

Htc = Hc - i g j L (H,O = Ha -I I g / “) 

Proof. From the inequalities valid in the positive cone when rjo 

H,>O (H,<ill. ifl>gCOS\, r>,Cl 

there follows the positive (negative) definiteness of the function H,* when the function H," , 
is positive (negative) definite. The converse statement follows from the fact that, when H,* 
is of fixed sign, the function H,' can only be of fixed sign since lf,* = H,' on the set gcosv= 
- 1 g jig CCJSP = j p 11. 

The lemma is quite useful in obtaining the sufficient conditions of stability of the 
coefficients c!,(f. j = 1. 71) and g of the form Ha*. This is important for sclving 
specific mechanical problems. Thus in the case of resonances 4i., = m, an6 2 (i., & i.,) = m, the 
lemma immediately red;ices the problem of the fixed-sign for-n of Hd* to the respective probiem 
of the quadratic form of the variables r,.....rn in the positive cone. 

Below, we shall investigate periodic systems with two degrees of freedom, and of 
autonomous systems wl<? three degrees of freedom. For simplicity, we shall consider only the 
case when in a set of n.u&ers ".I. ., m, there is no change of sign. Moreover, we confine 
ourselves tc obtaining solely tne conditions cf positive definiteness of the function HA*. 

Note that the case when m, and m, are of opposite sign (m,m.<(l) is investigated similarly. 

A periodic system witii two degrees of freedom. Fourth-order resonances 

4i.] mu "i., 2 (& - i.,' = m,. i., 7 3i., = m* 

are possible in this system. 
According to the lemca the Frobleir. of the positive definiteness of the function H,* for 

the first two resonances reduces to the positive definiteness of the quadratic form 

H; = h,,r,' - 2b,,r,r, - b,& (i.21 

in the positive cone. For the resonance 4i.,= m. we have 

b 11 F Cl1 -I 6 1. 4, = ~1s. b, = czz 

and for resonance 2 ii., -- i.:i = ni, 
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b,, = CII, b,, = CIZ - I 8 I 12, 4, = csz 

The conditions of positive definiteness of (7.2) are easily obtained. The sufficient 
condition consists of the satisfaction of one of the group of inequalities 

a) h, > (‘9 h, > (‘3 b,, > 0 

b) h, > (‘9 h, < 0, b,,b,, - b,? > 0 

The problem of the resonance i., f3i,= m,is solved differently: we have 

H,O = ~,,r,~ + 2c12r,r2 - c& - 1 g 1 r,l *,Z='* (7.3) 

As indicated above, the necessary condition for the function H,*, and hence also HdO , 
to be positive definite is the positive definiteness of H,. Hence the inequalities cl1 > 0, 
G: > (1 must necessarily be satisfied in (7.3). Under these conditions the function If," is 
positive definite along the straight lines r,= 0 and r,=e. We introduce outside the 
straight line r,= 0 a new variable y = rz.:rl. Then, when r,#O0, we have 

H,O = r?l (Yj, I (Yl = Cl, -t hy T cz*y2 - I g I yv/.u 

Hence the necessary and sufficient condition for H, l to be positive definite is in this 
case +-he lack of a non-negative root of the equation ! (Y) = 0. 

We have thus obtained the conditions for the function H,* to be positive definite for 
all cases of fourth-order resonance of a periodic system with two degrees of freedom. The 
conditions of negative definiteness are derived similarly. It will be seen that if the 
coefficients c,j(i.j = I. 2) and g analytically depend on the parameter e, the form H,* is of 
fixed sign when e=O, and when p= (1. and for fairly small e#O the form H,* is also of 
fixed sign. 

According to the generalized Theorem 1, the satisfaction of these conditions for the 
function Ha* to be of fixed sign ensures the Lyapunov stability of the system. 

The autonomous system with three degrees of freedon. According to the generalized 
Theorem 2 the sufficient condition of Lyapunov stability for this system is the fixed sign of 
the form H,* on the linear manifold (5.1) when n = 3. As above, we shall limit ourselves 
to obtaining the conditions of positive definiteness of the function H,*. The conditions 
of negative definiteness are derived similarly. 

All possible fourth-order resonances reduce in this system to twc resonances 

i., - 3/.: = ,I. i., i i., - -";., = 0 

For the first of these resonances the ineciualit) i.,i.,<o must necessarily be satisfied, 
and function HI* has the form 

(i.4i 
(i.5) 

The function (7.4) has the same fcrm as (7.3). Hence the subsequent analysis of the 
fixed sign of H,C is the same as the respective analysis 
condition 

r3 = - +.,r, 7 j.,r,) > 0 

must be taken into account. 
Let us summarize the results obtained. 
The necessary and sufficient conditon for H,* to be 

(5.1) is 

of (7.3). However the sap_cleme.ntary 

positive definite on the manifold 

IO (Vi - I P I Y 1-i i 0. lo (Y) = dll i 2da2y i d&* 

when v&3, if ii,i., > 0, and v d y :: 3, if i.,i., < 0. 
The analysis of resonance i., -I.,+?& = 0 is similar to the preceding. Depending on the 

sign of the constants A,, i.,, I., , we obtain three groups of conditions. 
Let us formulate the final result. 
The function H,' on the manifold (5.1) has the form 
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where .?? (rl, r,l is determined by formulae (7.5). The necessary and sufficient condition for 

Ha' to be positive definite on manifold (5.1) is 

where, depending on the signs of the constants &.,,j*d,& , the variable y varies within the 
limits 

a?i,).,>0, ~a0 
b) ii,& < 0. k&, > 0, y > -h,12.z 
c) b&2 < 0, i& < 0, 0 $ y d -i',!& 

8. The stability of triangular libration points of the restricted three- 
body problem. The statement of the problem in the linear approximation and, also, fundamental 
results of a non-linear analysis of this problem are given in /9/. using these results, we 
shall confine the examinationtc two special cases. 

The plane e?liptic three-bodyproblem. Thesystminthis casehastwodeqrees cf freedom, andi 
the equations of pertrubed motion have the form (1.1) with a Hamiltonian peridociallydependent 
on time. In addition, the Hamiltonian H depends on two parameters, p, the ratio of the 
mass of one of the twc attracting bodies to the sum of masses of both bodies, and the 
eccentricity e. 

According to /9/, for a fairly small eccentricity and ali values of p from the interval 
(8.1: 

0 03429433. I = PlCP-C!J * = 0,038X08. (8.0 
except those corresponding tc the resonances 

I., - ?i., = _ 0. 3X, - i., = 0. 3h, = -2 (8.2, 

in the normalized Hamiltcnian, the fcrm N,* f 0, andthe fourth-order form N4* has the for;; 

Ht* = im,i $ ,mli;l Cl1 (p. e) TX2 - 'cm ({I. e) FL?2 - ci2 ({I. P) r*: -- g (p. e) r1 r, co.? v &%aj 

When there are nc fo,urth-order rescnances, if g(p.e) z 13. whiIe on other resonance 
curves possrtle in the interval (E.1‘ 

3i., - i., = 2. .?i., - i., = 3. i., - Zi., = 2. i., - IzV.~ = -1, 4i., = 3 (8.4, 

the f-unction E: depends 0r.i;: 3.1: i and vanishes when e = 0. The coefficients caj (i? j = 1. 2) 
are alsG analytic functions cf e, and when e = 0 they take positive values, and c,, (u. 0) ;-. il.3, 

cl2 (v. 0) > f&O, c2:, &I. 0) > 7.5. Yherefore for a fairly smell eccentricity 0 <,e< 1 the 
function (6.3) is positive def;r.i'_e irrespective of the presence of resonances (9.4). The 
following thecrem fOl>OWS frGrt Theerem 1 and its generalizaticn. 

Theorem 3. The zriang-lar libration points of a plane elliptical restricted three-hod; 
problem for a fair2.y sma:l eccentricity is Lyapunov stable for all values of I+ from the 
intervai (8.1), excluding those corresponding to resonances (9.2). 

Remark. Fsr [I belonging tG t;le inter-<&l (8.1) anh small e the resonance 3i.,= -2 
remained uninvestiga:ed. 1t ret-;ires the analysis of terms of order c2 and higher in 
coefficients cf the normalized Eamiltonian. According to ,'9/ the resonances 1., + z., = 0, 3i., - 

i.* = 0 result in rnstability. 
For arbitrary non-resonant+, ir. "he sense of the lack of second-fourth order resonances, 

values of e, as the result of the numerical investigation in /13/ in the stability regiCr. 
MS CMarkeyev~~okoL skli) regions were separated to a first approximation where the form (3.1) 
is of fixed sign (see alsc /C.', pg.68-169, Figs. 18 and 19). The application af Theorem 1 
tc these results establishes the foilowing theorem. 

Theorem 4. The triangular libration poLnts of the plane elliptic restricted three-body 
problem are Lyapunov stable for all non-resonance parameters p,e from MS regions. 

The three dimensiona circular three-body prob1e.m. In this problem the Hamiltonian does 
not explicrtly depend on time aad n = 3. It is shown rn /9/ that for ail p from the 
intervals 
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0 < p < 0,010913. . .; 0,016376. . < p < /.I~ = 0,024293. . . (8.5) 

/.L~ < p < 0,038520. . . 

system (5.3) has no other solution than the trivial. Hence we have the following theorem. 

Theorem 5. The triangular libration points of the three-dimensional restricted three- 
body problem is Lyapunov stable for all values of the parameter p from the interval (8.3). 
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ESTIMATE OF THE STABILITY OF A DYNAMIC SYSTEM ON THE BASIS 
OF THE QUASISTATIONARITY PRINCIPLE l 

Y’d I+ . 2. VOLIN 

The following probl em is for-_lated and sclved: in what cases, and on what 
basis for examining the stability of the stationary sclution of a 
"quasistationary" system can we judge the stability of +be stationary 
solution of the initiai system? Tine thecrens which formulate the necessary 
and sufficient conditions of *the stability are proved. It is shown how 
the results obtained can be used to examine the thermal stability of a 
chemical reactor. 

1. Suppose it is required to examine the stability of the stationary state of a dynamic 
system. When using Lyapunov's first method this problem reduces (if we do not consider special 
cases) to the problem of verify' ing the Stabiiity of the zeroth solution of the linearized 
system. We will ass.zme that the latter can be represented in the form 

d&J ;ii- =Jy - B;. $ = Cy - Dr: ysRII"'. _-CR' (1.1) 

We will also introd.Jce the notation s = (y,. ., ., y,.:,. . . . . z,)~, m T i = n, where the index 
T denotes transposition. 

l ?ri~l.j.~te.~..Mekhan., 40 2 ^L _,_,36&3/6,19c: 


